【積載荷重】

第85条 建築物の各部の積載荷重は、当該建築物の実況に応じて計算しなければならない。ただし、次の表に揚げる室の床の積載荷重については、それぞれ同表の (い)、(ろ)又は(は)の欄に定める数値に床面積を乗じて計算することができる。

	構造計算の対象		(い)	(3)	(は)
	室の種類	可昇の刈家	床の構造計算をする場合	大ばり、柱又は基礎の構造計算をする場合	地震力を計算する場合
	主 り 性		(単位 N/m³)	(単位 N/m³)	(単位 N/m³)
(1)	住宅の居室,住宅以外の建築物における寝室又は病室		1,800	1,300	600
(2)	事務室		2,900	1,800	800
(3)	教 室		2,300	2,100	1,100
(4)	百貨店又は店舗の売場		2,900	2,400	1,300
(5)	劇場,映画館,演芸場,観覧場,公会堂, 集会場その他これらに類する用途に	固定席の場合	2,900	2,600	1,600
	供する建築物の客席又は集会室	その他の場合	3,500	3,200	2,100
(6)) 自動車車庫及び自動車通路		5,400	3,900	2,000
(7)	廊下、玄関又は階段 (3)から(5)までに揚げる室に連絡するものにあっては、(5)の「その他の場合」の数値による。				の場合」の数値による。
(8)	屋上広場又はバルコニー		(1)の数値による。ただし、学校又は百貨店の用途に供する建築物にあっては、(4)の数値による。		

SI 国際単位系について

SI採用の背景

世界の計算単位としてわが国が採用している「メートル系」とアメリカ等の「ヤード・ポンド系」単位があります。

各国間の貿易が拡大されていく中,これらを統一した単位系が必要とされてきました。

このために生まれた国際的な統一単位系が SI(エスアイ)です。

語源は下記の通り、フランス語の国際単位系の頭文字からとった略称です。

1.語源:(仏語) Le Systeme International d´Unites (英語でInternational System of Units)

- 2.定義:基本定義 [m,kg,s,A,K,mol,cd],補助単位 [rad,sr],組立単位*および接続語からなる一貫した単位系で国際的に統一されたもの。 *組立単位
 - (1)基本単位の組立単位:m²,m/S,m/S²など。
 - (2) 固有名称をもつ組立単位:N,Pa,J,Hz など。

N(ニュートン)について

すなわち質量1kgの物体に働く重力の1kgfを絶対のものとして基本単位にしています。

しかし,実際には重力は地域による重力差があります。宇宙船では無重力で物体は宙に浮いてしまいます。

これに対しSI単位系では、力の単位として物理で使用されている絶対単位系のN(ニュートン)と言う単位を使用しています。

物理的には $1 \log 0$ 質量に1 m / S 0加速度を生じさせる力を $1 N \log 0$ と呼びます。具体的には、 $1 \log 0$ 静止したボールをバットで打ち、そのボールが最初の $1 \% 1 \log 1 \log 1$ が間に $1 \log 1 \log 1$ が間に $1 \log 1 \log 1 \log 1$ が間に $1 \log 1 \log 1 \log 1$ が目に $1 \log 1 \log 1 \log 1 \log 1$ は以、宇宙をとわずどこであっても常に不変です。

SIでは力は全てN表示として、 $1 \log = 9.80665$ Nと定義されています。

⇒従来単位とSI単位の換算は下表をご利用ください。

表1 従来単位からSI単位への換算

特性値の名称	換 算 式	数字の丸め方	
荷重	$Y(N) = 9.80665 \times X(kgf)$	有効数字3桁に丸める	
引張強さ,降伏点耐力,高圧耐力	$Y(\text{N/mm}) = 9.80665 \times X(\text{kgf/mm})$	整数に丸める	
水 圧,空 圧	$Y(MPa) = 0.0980665 \times X(kgf/cm²)$	小数点以下1桁に丸める	

- (1) 換算後の数値の丸め方は IIS 7.8401 (数値の丸め方)によります。
- (2) 換算式を相互に使用した場合など、必ずしも換算値が一致しないことがあります。

表2 SI単位から従来単位への換算

特性値の名称	換	算		式
荷 重	Y(kgf)	= X(N)	÷	9.80665
1円 里		,		0.101972
引張強さ,降伏点	Y(kgf/mm³)	$= X(N/\text{mm}^2)$	÷	9.80665
耐力,高圧耐力		$= X(N \diagup m \vec{n})$		
水 圧.空 圧	Y(kgf/cm³)	= X(MPa)	÷	0.0980665 10.1972
小 圧, 至 圧		= X(MPa)	×	10.1972